Simple Solution using Integrating Factor
dydx+y⋅p(x)=q(x)y′+yp=qI=∫pdx,dIdx=pddx(yeI)=y′eI+yeIdIdx=y′eI+yeIp=eI(y′+yp)=eIqyeI=∫(eIq)+CwithsomeconstantCy=e−I[∫(eIq)+C]
dPdt+KdP=A0+mK2.303t(6.44)y=P,x=tp=Kd,q=A0+mK2.303tI=∫t0Kddt=Kdt,eI=eKdtP=e−Kdt[∫eKdt(A0+mK2.303t)dt+C]