3.2 Basic Characteristics from the definition
(cf)′=d(cf)dx=cdfdx=cf′
(f+g)′=d(f+g)dx=dfdx+dgdx=f′+g′
(f⋅g)′=d(f⋅g)dx=dfdx⋅g+f⋅dgdx=f′⋅g+f⋅g′
(fg)′=ddx(fg)=f′g−fg′g2
(1g)′=ddx(1g)=−g′g2
ddxlogau=logaeududxa≠0,1
ddxln(u)=ddxlogeu=1ududx
ddxau=auln(a)dudx
ddxeu=eududx
ddxuv=ddxev⋅ln(u)=ev⋅ln(u)ddx[v⋅ln(u)]=vuv−1dudx+uv⋅ln(u)dvdx