3.3 Chain rule

fg=fg(x)=f(g(x))=f(g)

d(fg)dx=d(f(g))dx=fg=f(g)g(x)=dfdgdgdx

Proof. u=g(x),k=g(x+h)g(x)=g(x+h)u,u+k=g(x+h)

f(u)=lim

\varphi(k) = \frac{f(u + k)- f(u)}{k} - f^{\prime}, \quad \lim\limits_{k \to 0} \varphi(k) = 0

k \varphi(k) = f(u + k) - f(u) - kf^{\prime}(u)

f(u + k) - f(u) = k \varphi(k) + kf^{\prime}(u)

\frac{f(g(x + h)) - f(g(x))}{h} = \frac{f(u + k) - f(u)}{h} = \frac{kf^{\prime}(u) + k\varphi(k)}{h}

= \frac{k}{h}f^{\prime}(u) + \frac{k}{h}\varphi(k) = \frac{g(x + h) - g(x)}{h}f^{\prime}(u) + \frac{g(x + h) - g(x)}{h}\varphi(k)

\frac{d(f(g))}{dx} = \lim\limits_{h \to 0} \frac{f(g(x + h)) - f(g(x))}{h} = \lim\limits_{h \to 0} \left[ \frac{g(x + h) - g(x)}{h} f^{\prime} + \frac{g(x + h) - g(x)}{h}\varphi(k) \right]

= g^{\prime}(x) \cdot f^{\prime}(u) + g^{\prime}(x) \cdot 0

= f^{\prime}(u) \cdot g^{\prime}(x)

\frac{d}{dx}(f \circ g \circ h) = \frac{d(f \circ g \circ h)}{dx} = \frac{df}{dg} \frac{dg}{dh} \frac{dh}{dx}