3.3 Chain rule
f∘g=f∘g(x)=f(g(x))=f(g)
d(f∘g)dx=d(f(g))dx=f′⋅g′=f′(g)⋅g′(x)=dfdgdgdx
Proof. u=g(x),k=g(x+h)−g(x)=g(x+h)−u,u+k=g(x+h)
f′(u)=lim
\varphi(k) = \frac{f(u + k)- f(u)}{k} - f^{\prime}, \quad \lim\limits_{k \to 0} \varphi(k) = 0
k \varphi(k) = f(u + k) - f(u) - kf^{\prime}(u)
f(u + k) - f(u) = k \varphi(k) + kf^{\prime}(u)
\frac{f(g(x + h)) - f(g(x))}{h} = \frac{f(u + k) - f(u)}{h} = \frac{kf^{\prime}(u) + k\varphi(k)}{h}
= \frac{k}{h}f^{\prime}(u) + \frac{k}{h}\varphi(k) = \frac{g(x + h) - g(x)}{h}f^{\prime}(u) + \frac{g(x + h) - g(x)}{h}\varphi(k)
\frac{d(f(g))}{dx} = \lim\limits_{h \to 0} \frac{f(g(x + h)) - f(g(x))}{h} = \lim\limits_{h \to 0} \left[ \frac{g(x + h) - g(x)}{h} f^{\prime} + \frac{g(x + h) - g(x)}{h}\varphi(k) \right]
= g^{\prime}(x) \cdot f^{\prime}(u) + g^{\prime}(x) \cdot 0
= f^{\prime}(u) \cdot g^{\prime}(x)
\frac{d}{dx}(f \circ g \circ h) = \frac{d(f \circ g \circ h)}{dx} = \frac{df}{dg} \frac{dg}{dh} \frac{dh}{dx}