y=f(x1,x2,x3,…,xn)
∂y∂x1=∂f∂x1≡lim
\frac{\partial y}{\partial x_k} = \frac{\partial f}{\partial x_k} \equiv \lim\limits_{h \to 0} \frac{f(x_1, x_2, \dots, x_k + h, \dots, x_n) - f(x_1, x_2, \dots, x_k, \dots, x_n)}{h}